Instance Based Clustering of Semantic Web Resources
نویسندگان
چکیده
The original Semantic Web vision was explicit in the need for intelligent autonomous agents that would represent users and help them navigate the Semantic Web. We argue that an essential feature for such agents is the capability to analyse data and learn. In this paper we outline the challenges and issues surrounding the application of clustering algorithms to Semantic Web data. We present several ways to extract instances from a large RDF graph and computing the distance between these. We evaluate our approaches on three different data-sets, one representing a typical relational database to RDF conversion, one based on data from a ontologically rich Semantic Web enabled application, and one consisting of a crawl of FOAF documents; applying both supervised and unsupervised evaluation metrics. Our evaluation did not support choosing a single combination of instance extraction method and similarity metric as superior in all cases, and as expected the behaviour depends greatly on the data being clustered. Instead, we attempt to identify characteristics of data that make particular methods more suitable.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA procedure for Web Service Selection Using WS-Policy Semantic Matching
In general, Policy-based approaches play an important role in the management of web services, for instance, in the choice of semantic web service and quality of services (QoS) in particular. The present research work illustrates a procedure for the web service selection among functionality similar web services based on WS-Policy semantic matching. In this study, the procedure of WS-Policy publi...
متن کاملCentralized Clustering Method To Increase Accuracy In Ontology Matching Systems
Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...
متن کاملA goal directed learning agent for the Semantic Web
This thesis is motivated by the need for autonomous agents on the Semantic Web to be able to learn. The Semantic Web is an effort for extending the existing Web with machine understandable information, thus enabling intelligent agents to understand the content of web-pages and help users carrying out tasks online. For such autonomous personal agents working on a world wide Semantic Web we make ...
متن کاملHierarchical Fuzzy Clustering Semantics (HFCS) in Web Document for Discovering Latent Semantics
This paper discusses about the future of the World Wide Web development, called Semantic Web. Undoubtedly, Web service is one of the most important services on the Internet, which has had the greatest impact on the generalization of the Internet in human societies. Internet penetration has been an effective factor in growth of the volume of information on the Web. The massive growth of informat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008